AES-GCM-SIV: Specification and Analysis

نویسندگان

  • Shay Gueron
  • Adam Langley
  • Yehuda Lindell
چکیده

In this paper, we describe and analyze the security of the AES-GCM-SIV mode of operation, as defined in the CFRG specification [10]. This mode differs from the original GCM-SIV mode that was designed in [11] in two main aspects. First, the CTR encryption uses a 127-bit pseudo-random counter instead of a 95-bit pseudo-random value concatenated with a 32-bit counter. This construction leads to improved security bounds when encrypting short messages. In addition, a new key derivation function is used for deriving a fresh set of keys for each nonce. This addition allows for encrypting up to 2 messages with the same key, compared to the significant limitation of only 2 messages that were allowed with GCM-SIV (which inherited this same limit from AES-GCM). As a result, the new construction is well suited for real world applications that need a nonce-misuse resistant Authenticated Encryption scheme. We explain the limitations of GCM-SIV, which motivate the new construction, prove the security properties of AES-GCM-SIV, and show how these properties support real usages. Implementations are publicly available in [8]. We remark that AES-GCM-SIV is already integrated into Google’s BoringSSL library [1] and is deployed for ticket encryption in QUIC [17]. Preamble for the July 2017 edition We would like to thank Tetsu Iwata and Yannick Seurin for alerting us to the fact that we had erroneously assumed that one of the terms in the security bounds of AES-GCM-SIV was dominated by another term. (Specifically, ′, the advantage of the adversary A′; see comments on pages 11 and 12 of the previous version of this paper). Thus, while the security proof was correct, the example concrete bounds were overly optimistic, most notably for very large messages. This July 2017 update fixes the concrete bounds that were given in the previous version, and some other small errors pointed out by Iwata & Seurin. Detailed proofs for the bounds appear in [12]. ? Supported by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds

This paper revisits the multi-user (mu) security of symmetric encryption, from the perspective of delivering an analysis of the AESGCM-SIV AEAD scheme. Our end result shows that its mu security is comparable to that achieved in the single-user setting, in a strong sense. In particular, even when instantiated with short keys (e.g., 128 bits), the security of AES-GCM-SIV is not impacted by the co...

متن کامل

GCM-SIV: Full Nonce Misuse-Resistant Auth- enticated Encryption at Under One C/B

Authenticated encryption schemes guarantee both privacy and integrity, and have become the default level of encryption in modern protocols. One of the most popular authenticated encryption schemes today is AES-GCM due to its impressive speed. The current CAESAR competition is considering new modes for authenticated encryption that will improve on existing methods. One property of importance tha...

متن کامل

Reconsidering the Security Bound of AES-GCM-SIV

We make a number of remarks about the AES-GCM-SIV nonce-misuse resistant authenticated encryption scheme currently considered for standardization by the Crypto Forum Research Group (CFRG). First, we point out that the security analysis proposed in the ePrint report 2017/168 is incorrect, leading to overly optimistic security claims. We correct the bound and re-assess the security guarantees off...

متن کامل

Boosting Authenticated Encryption Robustness with Minimal Modifications

Secure and highly efficient authenticated encryption (AE) algorithms which achieve data confidentiality and authenticity in the symmetric-key setting have existed for well over a decade. By all conventional measures, AES-OCB seems to be the AE algorithm of choice on any platform with AES-NI: it has a proof showing it is secure assuming AES is, and it is one of the fastest out of all such algori...

متن کامل

Optimal PRFs from Blockcipher Designs

Cryptographic modes built on top of a blockcipher usually rely on the assumption that this primitive behaves like a pseudorandom permutation (PRP). For many of these modes, including counter mode and GCM, stronger security guarantees could be derived if they were based on a PRF design. We propose a heuristic method of transforming a dedicated blockcipher design into a dedicated PRF design. Intu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017